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FOM Focus Group Groningen ‘Next Generation 
Organic Photovoltaics’

•  Aim: 
–  Deliver the science for highly efficient, long-lived, and low-

cost organic photovoltaic devices

•  Challenge:
–  Charge separation at the donor/acceptor interface

•  Approach:
–  Multi-disciplinary:

•  Material development
•  Physical characterisation (OPV device physics)
•  Theoretical modelling



Theoretical challenges

•  Predict molecular properties that determine the dielectric 
properties of the interface
–  Dipole moments
–  Polarisability

•  Modelling of the donor/acceptor interface
–  Molecular Dynamics simulations

•  Time scales of molecular motion
•  Calculation of the excited states

–  Theoretical methods
–  Influence of molecular structure
–  Influence of the embedding using multiscale modelling

•  Approximation of the electron/energy transfer rates



Singlet fission

SF: spin allowed radiationless process

It is attractive to build the wavefunctions of 
the solid from state-specific molecular 
wavefunctions

hν

 M. B. Smith, J. Michl, Chem. Rev. 110 (2010), 6891



Singlet fission rate

•  Fermi Golden rule in diabatic representation (Marcus theory)

–  Electronic coupling between diabatic states
•  Directly accessible with our non orthogonal CI approach

•  Adiabatic representation: Non-adiabatic couplings (Landau-
Zener model)

–  Potential energy surfaces and conical intersections/
crossings P.F. Barbara, T.J. Meyer, M.A. Ratner, J. Phys. Chem. 100 (1996), 13148

F. Bernardi, M. Olivucci, and M.A. Robb, Chem. Soc. Rev. 25 (1996), 321
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Cluster approximation for solids

•  Describe solid in terms of molecular wavefunctions

•  Compute wavefunctions of each molecule for specific states 
(CASSCF)

•  Form many-electron basis functions (S0S0, S0S1, 1TT, CT), each 
describing a particular combination of molecular states



Non orthogonal configuration interaction
•  Describe wavefunctions of a cluster of molecules in terms of 

(localised) molecular many-electron basis functions (MEBF)
–  MEBFs are spin-adapted antisymmetrised products of 

molecular wavefunctions:

–  Molecular wavefunction can be any multiconfigurational 
wavefunction
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Non Orthogonal Configuration Interaction

•  Wavefunction expanded as:                  with Φi a many-electron basis 

function ((MEBF) Slater determinant, or combination thereof)

•  The orbitals ϕj in a MEBF are not orthogonal, making the many-
electron MEBFs also not orthogonal:  

•  The non orthogonality of the orbitals within one MEBF and of the 

orbitals in a different MEBF complicates the calculation of the 

required Hamiltonian matrix elements

•  Solve                           to get energies and Ψ (Ci’s)

Ψ = CiΦi
i=1

N

∑

Φi Φ j = Sij

Φi H Φ j

(H − ES)(C) = 0



Advantages of this NOCI
•  Inclusion of orbital relaxation effects
•  Inclusion of (static) correlation effects
•  Short wavefunction expansions
•  Chemical interpretability

–  Description of system in terms of predefined states

•  Con: no simple Slater rules for the computation of matrix 
elements of the Hamilton operator in the MEBF basis

n→π *

OO

π →π *



Computational Aspects of our NOCI approach

•  Typical number of           ~ 20 

–  H/S matrices contain ~ 210 elements of the type  
                      and

•  If          contains ~ 500 determinants, then

•   

•  Approximately           elements                 have to be calculated 

for one matrix element                      

•  Aim for high level of parallelism

•  Easy to parallelize
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Technical Aspects
•  Evaluation of                 with non orthogonal orbitals

–    

–  First and second order co-factors needed

•  With corresponding orbitals, then  

and   

•  No 4-index, but transform co-factors to common basis in which 

the corresponding orbitals ci and di are expressed

•  SVD and matrix multiplications

•  Use GPUs

Δi H Δ j

Hij = hijS
(i, j )

i, j
∑ + [(ij | kl)− (ik | jl)]S(i, j ,k ,l )

j<l
∑

i<k
∑

ci d j = λiδ ij

S(i,i ) = λm
m≠i
∏ (S(i, j ) = 0 for i ≠ j)



The GronOR code

•  In collaboration with OLCF, based on the GNOME code

–  OpenACC for GPU off-loading
–  Master-worker model with task based load balancing
–  MPI parallelization with point-to-point non-blocking 

communication
–  Avoid global synchronization and global reduction operations
–  Fault resilient implementation



GronOR Master-Worker Process Layout
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Each process group has the same number of worker processes
Each process group should have sufficient aggregate memory to hold all 
integrals: One-electron integrals are duplicated

Two-electron integrals are distributed
Consequences of Node Faults: All processes on a failing node fail

If a worker process fails, the entire group to 
which it belongs will fail 



Case study I - Naphthalene dimer

•  Neglect of dynamical correlation (S1 too high)
•  Endoergic
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Performance of GronOR

Benchmark run on 
Summit, requiring 
112,867,800 matrix 
element evaluations

•  Each node with 6 MPI 
ranks

•  1 GPU per rank
•  Good scalability with 

number of nodes
•  Performance 

improvement from 
GPU is 6.8x



Reduction of required 2-e- integrals

•  The MOs in the CASSCF wavefunction are expressed in N AOs
–  # 2-e- integrals ~ N4/8

•  The n inactive + active MOs of all states of a molecule form a 
basis as well: 

•  Redundant basis, eliminate linear dependencies, based on 
threshold ε, and transform MOs and 2-e- integrals to new basis

•  Dimension of new basis m << N

φ1
S0 ,...,φn

S0 ,φ1
S1 ,...,φn

S1{ }



Case study II - Pyridine

CAS(4,4)/
cc-pVTZ
32 nodes,
6 ranks/node

570 148 136 110 98 72 54 48 #bf
46000 841 600 257 162 47 15 9.1 Integral size (MB)
2408 253 244 226 219/

73
210 205 204 Time (s)



CI threshold – remove contributions from 
configurations with small CI coefficients

•  CAS(6,6)/6-311G**
•  36 ranks/node

1024 1024 64 1024* Nodes
6238 3002 406 87 Time (s)

*6 ranks/node



Singlet fission in tetracene

•  Geometry dependence of coupling in solid
–  MD using DFTB (NVT)
–  Estimate coupling using DFT and NOCI



Effective coupling, DFT and NOCI

•  Coupling heavily 
dependent on 
geometry

•  AB/AC 
orientation best



Tetracene coupling

•  Large electronic coupling in the AB orientation

•  Molecules A and B get closer
–  Larger HOMO/HOMO and  

LUMO/LUMO overlap

•  Strong mixing of CT states (30%) in local  
excited state on A and in 1TT state  

•  Direct coupling: 5 meV

•  CT mediated coupling: 32 meV 



Correlation NOCI vs DFT

•  Only weak correlation



Conclusions and outlook
•  Parallel NOCI program GronOR is working and ready to be used 

for interesting applications
–  Further optimizations are in progress
–  Better handling of CI lists
–  Inclusion of dynamical correlation and embedding effects

•  Tetracene
–  CT states enhance the coupling
–  Coupling and CT state mixing heavily dependent on geometry
–  Static picture not always sufficient for predicting singlet fission
–  Weak correlation NOCI vs DFT couplings

•  Further studies:
–  Cibalackrot and other SF molecules
–  Effects of functional groups on electronic coupling
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